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Abstract—Today, harmonic balance is the most useful ap
proach for microwave nonlinear-network analysis. Fast Fourier
transform (FFT) is usually used to convert the nonlinear-
elements’ time waveforms into the frequency domain as part of
the harmonic-balance process. This approach is straightforward
for a single-frequency excitation, but is quite complicated and
time consuming for the multifrequency-excitation case. In this
paper, we propose a mathematical model termed “signal space,”
which enables (for a given nonlinearity) a direct calculation
of the currents spectrum (given the voltages spectrum) and
is suited for implementation for harmonic balance. Under
describing-function criteria, we use the signal-space approach
to get expressions for oscillator parameters such as oscillation
frequency, stability condition, and injection-locking bandwidth.
There is a good agreement between our results and Kurakawa’s
expressions.

I. INTRODUCTION

A NALYSIS of nonlinear microwave networks is a very
useful tool for most practical microwave components,

and several approaches have been developed in both time
and frequency domains. Undoubtedly, the frequency-domain
harmonic-balance approach is today the most useful in mi-
crowave computer-aided design (CAD) software. Rhyne and
Steer [1] proposed the generalized power series, which en-
ables, for a given nonlinearity, a direct calculation of the
currents spectrum given the voltages spectrum. In [2], we
proposed a new mathematical method termed “signal space”
for analyzing nonlinear networks. The signal space, which has
the same basis as Steer’s suppositions, is a polynomial’s phasor
vector space, in which each harmonic current can be described
by a linear combination of base polynomials, and then enables,
for a given nonlinear device, a direct calculation of the currents
spectrum given the voltages’ spectrum. The expressions for the
harmonic currents, which appear in Section I, are simple and
suited to implementation for harmonic balance.

Several researchers have implemented nonlinear analysis of
free-running oscillators using describing-function techniques
[6]–[8]. In these techniques, the system equations and os-
cillation criteria are combined to yield a set of algebraic
equations. In this paper, we applied describing-function criteria
to signal space for design of a parallel-resonator oscillator
based on negative conductance. Under these conditions, we get
expressions for the frequency of oscillation, stability condition,
injection-locking bandwidth, and other oscillator parameters.
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Our results are compatible with Kurokawa’s expressions and
a Gunn oscillator design.

II. THE SIGNAL SPACE

We demonstrate the method by considering a nonlinear two-
port network. The relation between the time-domain currents
and voltages for a memoryless two-port network is represented
generally as

(1)

where and are functions representing the nonlinear
device, and and are the voltages of the nonlinear device
where and are the currents of the nonlinear device.
We assume that both voltages are composed of a signal at
frequency and its harmonics, namely, a periodic function

(2)

where

where and indexes indicate a positive and negative contri-
butions for the harmonic number of the current, respectively.
The indexes 1 and 2 indicate ports 1 and 2, respectively,
indicates harmonic number, andis the number of harmonic
considered. Assume that and can be expressed as a
Taylor series, namely,

(3)

Substitute the voltages, and from (2) to (3),
using the multinominal formula, and arranging the result to
groups of polynomials with the same harmonic number.
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The expression for the current at harmonic consists of
polynomials with a general form

(4)

where

(5)

The sum is the maximum order of the truncated tailor
series used in practice, and the summation in (4) is done on all
the combinations which appear in (5) for given and .
is the number of harmonics considered andis the harmonic
number of the considered term

(6)

Polynomials of the above form represent a vector space that
we term “signal space.” All the polynomials with a specific
harmonic number form a subspace of the signal space. Thus,
every one of the harmonic currents of the nonlinear device can
be expressed as a vector in the signal space. The coefficients

are calculated by the general formula

(7)

The same idea can be implemented for a one-port device.
The expression for the current at harmonic consists of
polynomials of a general form

(8)

where

(9)

and

(10)

The coefficients are

(11)

Thus, for the nonlinear device, it is possible to analytically
calculate the spectral content of the device current given the
spectral content of the device voltage.

The above idea is readily applicable for a reactive nonlinear
device. Consider, for example, a nonlinear capacitor for which
the current–voltage relation is represented by

Following the analysis above, and assuming a periodic
voltage waveform, one can derive the expressions for the
current spectral content expressed as vectors in the signal
space. The expression for the capacitance in a Taylor
series is

(12)

and its expression in the signal space

(13)

where

The expression for the harmonic-capacitor current is the
result derived by multiplication of in (13) by the
expression of the voltage time derivative and is

(14)

where
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Fig. 1. A diode and its equivalent circuit.

A nonlinear device composed of a time delayhas harmonic
current of the general form

(15)

III. D IODE REPRESENTATION INSIGNAL SPACE

Using the expressions described above, we derive the rep-
resentation of a diode in the signal space.

A simple diode and its equivalent circuit are shown in
Fig. 1. The equivalent circuit consists of a conductance,
diffusion capacitance , and depletion capacitance
[11]. The expression for the conductance current is

(16)

The expression for the harmonic of its current is described
in (8). Where the coefficients are

(17)

The expression for the diffusion capacitance is

(18)

Its harmonic current is described in (13) and (14), where
the coefficients are

(19)

The expression for the depletion capacitance is

(20)

This function can be approximated by curve tracing to the
tailor series, as appears in (12).

Its harmonic current is described in (13) and (14).
The current at harmonic is the sum of the three terms

(21)

and in the time domain

Fig. 2. IF1 current as a function ofVF1 in the FFT method and signal
space while varying parameterVF2.

Fig. 3. Parallel resonant oscillator.

IV. SIGNAL-SPACE ACCURACY

To investigate the accuracy of the signal-space approach,
we calculated the harmonic of the current of a simple diode
using the signal-space process and compared the results to
the fast Fourier transform (FFT) process. The expression of
the diode current is . Suppose and

, one could approximate this expression to the
fifth power of a Taylor series. Suppose also that there are
three harmonics of voltages , , . Using (4)–(7),
we calculated the first current harmonic as a function of

in the signal space and the FFT method, while is
a constant equal to 0.1 V and as a varying parameter
between 0.1–0.3 V. From the results in Fig. 2, there is a good
agreement between the two methods. The signal-space method
was tested using other nonlinear elements and was found
compatible to the FFT method. We get the same accuracy for
extreme nonlinear elements using the signal space compared
to the standard FFT process. However, as the element is more
nonlinear, its presentation in the signal space consists of more
polynomials, and the computing time is longer.

V. OSCILLATOR ANALYSIS AND DESIGN

The signal-space approach can be used for analytic inves-
tigation of microwave oscillator networks. We have derived
a method to analyze a negative-resistance oscillator, which
yields design guide rules similar to the well-known analysis
approach of Kurakawa. Consider the network in Fig. 3. The
nonlinear device is represented by a nonlinear negative re-
sistance and a nonlinear capacitance , . The
device is resonated by the resonant circuit and is the
load conductance.
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To analyze this circuit, we make the commonly used as-
sumption that the voltage contains only the fundamental
component at frequency . The other voltage harmonics
are assumed negligible due to the filtering action of the
resonant circuit. Under these conditions, we use the signal-
space approach to get expressions for the current spectrum
components. In this case, the expression for the first harmonic
current of the negative resistor is

(22)

It is obvious that the voltage phase can be arbitrarily chosen,
thus, for a phase equal to zero, , and (22)
reduces to

(23)

The coefficients have to be calculated using the expres-
sions of [2] and [3] and the Gunn model.

Under the same conditions, the expression for the first
harmonic current of the nonlinear capacitor is

(24)

where
for

for
for

The coefficients have to be calculated using the expressions
of [2] and [3] and the Gunn model.

The current into the resonator for the same voltage is

(25)

where is the resonant frequency and .
Using Kirchoff’s law, the summation of the device and load

currents must equal zero as follows:

(26)

Using this condition and separating the real and imaginary
parts, the oscillation frequency and amplitude are found
to be (27) and (28), shown at the bottom of this page, where

represents the nonlinear-device capacitor coefficients in the
signal space. As expected, the oscillation frequency equals
for .

Fig. 4. The loadY (j!) and devicef(V1) curves in the complex plane.

Expressions (27) and (28) give the amplitude and frequency
oscillation of a parallel resonant oscillator circuit, and consists
of a nonlinear negative resistor and nonlinear capacitor loaded
by a linear resonant circuit, as shown in Fig. 3. and

represent the nonlinear resistor and capacitor in the signal
space.

A. Oscillator Stability Condition

Using the Kurakawa stability condition [9] or the nonlinear
Nyquist [2], [10] condition for a parallel resonant circuit, the
phase deference between the device and load curves [9] has
to be 90 . The expression for the angle is

(29)

where

Using (29), the phase deference between the device and
load curves in an intersection point must be in the range

.
In Fig. 4, there is an example of the load and device curve in

the complex plane. There are two points at which the circuit
can oscillate, but according to condition (29), only is a
stable point.

(27)

(28)
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Fig. 5. The circuit diagram of injection-locked oscillator withIin as the
inject signal.

B. Injection Locking

Using the signal-space approach, we derived the expression
for the injection-locking bandwidth. Referring to Fig. 5, the
injected signal appears as . By solving the current Kir-
choff’s law using the signal-space expressions for the different
currents, one can express as a function of
the other parameters. The expression for the injection-locking
bandwidth is

(30)

where is the load current.
The first term is known as Adler’s formula; thus, (30) is an

extension of Adler’s expression for a nonlinear device. The
second term in this expression has more influence since the
device is more nonlinear.

C. Gunn-Device Modeling and Results

The signal-space approach has been used to design an
oscillator with a parallel resonator. The design was based on
a Gunn device, which is coupled to a microstrip resonator.
In the first step, we characterized the device in the signal
space as a negative nonlinear resistor connected to a nonlinear
capacitor. An M/A Gunn device MA49106 was inserted into
a coaxial resonator, and its load was changed by an EH tuner
to avoid oscillations. We measured the reflection coefficients
of the loaded diode for different power levels (0, 5, and
10 dBm) and derived the Gunn-diode impedance for each
input power. In the second step, we changed the EH tuner to
allow oscillations at 9.8 GHz for different power outputs in the
range of 12–16 dBm. The device impedance is the complex
conjugate of the load impedance, which was measured for
each power output. The diode impedance for each power was
measured in the two steps used to translate the device to the
signal space by calculating and coefficients of the
negative conductor and the capacitor accordingly, as shown
in (23) and (24). Using (27)–(30) for the circuit in Fig. 3, the
theoretical oscillation frequency and oscillation power were
9.8 GHz and 15.8 dBm, respectively. The experimental results
of 9.8 GHz and 16.2 dBm we obtained, respectively. Our
theoretical injection-locking bandwidth was 32 MHz, and we
obtained an experimental value of 36 MHz.

VI. CONCLUSION

In this paper, we present a novel analytical approach for the
analysis of nonlinear networks. The method presented belongs
to the general category of a frequency-domain harmonic-
balance algorithm. The main contribution of the new approach
is an analytic and efficient calculation of the nonlinear-device
current spectral components given the voltage spectral compo-
nents and the characteristics of the nonlinear device. The new
approach is based on a vector space termed the signal space.

The signal-space approach has been successfully used to
derive analysis and design criteria for a negative-resistance
oscillator, and we found a good agreement between theory
and experiment.
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